« §. 6. Schwere, Elektricität und Magnetismus §. 8. »
Für eine seitenweise Ansicht und den Vergleich mit den zugrundegelegten Scans, klicke bitte auf die entsprechende Seitenzahl (in eckigen Klammern).

|[24]

§. 7.
Transformation von .


 Der Ausdruck für lautet:



Nun ist aber, wie man leicht sieht:



 Folglich kann man schreiben


(1)


 Die dreifache Integration ist über den ganzen mit anziehender Masse erfüllten Raum auszudehnen. Wir bemerken darüber das Folgende. Das Coordinatensystem sei so gelegt, dass für jeden Punkt im Innern und in der Oberfläche der anziehenden Masse die Coordinaten positiv sind. Nöthigenfalls lässt sich dies durch parallele Verschiebung der Coordinaten-Ebenen erreichen. In der Ebene zeichnen wir ein unendlich kleines Rechteck, dessen Seiten von der Länge und resp. den Axen der und resp. der parallel laufen. Der dem Anfangspunkt zunächst gelegene Eckpunkt habe die Coordinaten . Ueber diesem Rechteck als Basis soll ein gerades Prisma errichtet werden, dessen Seitenkanten parallel zur Axe der laufen. Die Lage des Punktes wird so gewählt, dass dieses Prisma den mit Masse erfüllten Raum durchdringt. Wir bezeichnen mit und resp. die auf der Axe gezählten Coordinaten der Eintritts- und der Austrittsstelle. Tritt das Prisma öfter ein und aus, so sollen die Abscissen der Eintrittsstellen, die Abscissen der Austrittsstellen sein, und zwar so, dass



Die Bestandtheile des Elementarprisma, welche innerhalb der anziehenden Masse liegen, zerschneiden wir in unendlich viele gerade |[25]Parallelepipeda, jedes vom Inhalte . Der Inhalt eines solchen Parallelepipedon werde multiplicirt mit dem Werthe, welchen die Function in seinem einen Eckpunkte hat.

Das Product



ist das Element des Integrals. Die Integration nach wird ausgeführt, indem man dieses Product fur alle parallelepipedischen Bestandtheile des Elementarprisma bildet, welche innerhalb der anziehenden Masse liegen, und sämmtliche Producte addirt. Die Integration nach und nach besteht darin, dass man die eben besprochene Summe von Producten für alle Elementarprismen herstellt, welche die anziehende Masse überhaupt treffen, und alle diese Summen wiederum durch Addition verbindet.

 Wir wollen zunächst die Integration nach ausführen. Das unbestimmte Integral



lässt sich umformen durch Integration nach Theilen, nemlich


(2)


Diese Formel ist zur Umgestaltung des bestimmten Integrals leicht zu benutzen, wenn die Function innerhalb der Integrationsgrenzen überall endlich und stetig ist. Die Integrale auf der linken und auf der rechten Seite der Gleichung (2) sind dann zwischen denselben Grenzen zu nehmen und von dem freien Gliede hat man die Summe aller Werthe an den oberen Grenzen der Integration zu vermindern um die Summe aller Werthe an den unteren Grenzen. Wir bezeichnen die Werthe von und an den Grenzen der Reihe nach durch Anhängung der betreffenden Indices. Für die Integration nach und nach erhält man demnach das Element |[26]



Das Integral ist über alle die Theile des Elementarprisma zu erstrecken, welche innerhalb der anziehenden Masse liegen. Wir bezeichnen nun mit die unendlich kleinen Flächenstücke, welche das Elementarprisma aus der Oberfläche des mit Masse erfüllten Raumes bei seinem Ein- und Austritt herausschneidet und mit die Winkel, welche die nach dem Innern dieses Raumes zu auf errichteten Normalen mit der Axe der positiven einschliessen.

Fig. 4.

Es ist zu bemerken, dass die Cosinus dieser Winkel an den Eintrittsstellen positiv, an den Austrittsstellen negativ sind. (Fig. 4.) Demnach findet sich



und das Element der Integration nach und nach lautet jetzt



Die Summe bezieht sich auf alle die Stellen, an |[27]denen das Elementarprisma in den anziehenden Körper ein- und aus ihm austritt. Führt man nun die Integration nach und nach aus, so ergibt sich


(3)


Das dreifache Integral auf der rechten Seite ist über den ganzen mit Masse erfüllten Raum, das Integral über seine gesammte Oberfläche zu erstrecken.

 Die vorgenommene Transformation ist nur dann zulässig, wenn die Function innerhalb des mit anziehender Masse erfüllten Raumes an keiner Stelle unstetig wird. Findet an einzelnen Stellen eine Aenderung sprungweise statt, so hat man von dem Integrationsgebiete zunächst solche Raumtheile auszuschliessen, welche die Unstetigkeitsstellen völlig in sich enthalten. Dann wird man das Integral (1) auf die ausgeschlossenen Raumtheile nicht mit erstrecken und darf deshalb die Transformation vornehmen. Nachher ist die Frage zu beantworten, welchem Grenzwerthe das Resultat der Transformation sich annähert, wenn man die Oberflächen der ausgeschlossenen Gebiete den Unstetigkeitsstellen unendlich nahe rückt.