Centripetalkräfte gerichtet sind, welche in irgend einem Verhältniss der Abstände abnehmen.
Gegen den festen Körper DECG Fig. I.) wird der auf der Axe AB gelegene kleine Körper P hingezogen. Durch einen beliebigen, auf diese Axe senkrechten Kreis RTS werde der feste Körper geschnitten, und auf dem Halbmesser TS nehme man in der durch die Axe gehenden Ebene PALJB (nach §. 136.) die Länge TK derjenigen Kraft proportional, mit welcher der Körper P gegen den Kreis gezogen wird. Der Punkt K liege aber in der Curve LKJ, welche die Ebenen der äussersten Kreise DG und EC in den Punkten L und J schneidet; alsdann verhält sich die Anziehung des Körpers P gegen den festen Körper wie die Fläche LABJ.
Zusatz 1. Ist der feste Körper ein Cylinder, welcher durch Umdrehung des Parallelogramms ADEB (Fig. II.) um die Axe AB beschrieben worden ist, und sind die nach den einzelnen Punkten desselben gerichteten Centripetalkräfte den Quadraten der Abstände von ihnen umgekehrt proportional; so verhält sich die Anziehung des Körpers P gegen diesen Cylinder, wie
Denn die Ordinate TK ist (nach §. 136., Zusatz 1.) proportional
Der erste Theil, über die Länge AB geführt, beschreibt die Fläche
der zweite Theil , über die Länge PB geführt, beschreibt die Fläche
(was durch die Quadratur der Curve LKJ leicht gezeigt werden kann). Aehnlich beschreibt derselbe Theil, wenn er über PA geführt wird, die Fläche
und er beschreibt daher, indem er über den Unterschied
geführt wird, die Fläche
Subtrahirt man von der ersten Fläche 1 · AB die zweite 1 · (PE — PD), so bleibt die Fläche
Isaac Newton: Mathematische Principien der Naturlehre. Robert Oppenheim, Berlin 1872, Seite 216. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:NewtonPrincipien.djvu/224&oldid=- (Version vom 1.8.2018)