Schwere, Elektricität und Magnetismus:363

Bernhard Riemann: Schwere, Elektricität und Magnetismus
Seite 349
<< Zurück Vorwärts >>
fertig
Fertig! Dieser Text wurde zweimal anhand der Quelle Korrektur gelesen. Die Schreibweise folgt dem Originaltext.
Die Kugelfunction ten Ranges.


drucke (10) noch die unbestimmten constanten Coefficienten auf



 Eine wichtige Bemerkung ist noch über die constante Grösse zu machen. Im äusseren Raume stimmt nemlich die von dem wirklich vorhandenen Erdmagnet herrührende Potentialfunction überein mit der Function , die von der fingirten Belegung der Oberfläche herrührt und in der Gleichung (6) des vorigen Paragraphen entwickelt ist. Es gilt also für jeden Punkt im äusseren Raume die Gleichung


(11)


Nun können wir aber (wenn die bekannte Vorzeichen-Aenderung vorgenommen wird) den Satz in Anwendung bringen, der in der Gleichung (6) des §. 18 ausgesprochen ist. Hier bedeutet dasselbe, was dort mit bezeichnet ist. Wir erhalten danach


(12) für


Aus (11) berechnet sich


(13) für


Zieht man die Gleichung (2) des §. 105 in Betracht, so ergibt sich aus (12) und (13), dass


(14)


sein muss. Wir dürfen also in den Gleichungen (6), (7), (8) des vorigen Paragraphen die Summirung mit anfangen.

 Uebrigens sieht man, dass auch für die fingirte Belegung der Oberfläche


(15)


ist. Denn wir haben nach dem eben citirten Satze [§. 18, (6)]


für


und da für jeden Punkt im äusseren Raume ist, so ergibt sich



und damit ist die Gleichung (15) bewiesen.