Schwere, Elektricität und Magnetismus:249

Bernhard Riemann: Schwere, Elektricität und Magnetismus
Seite 235
<< Zurück Vorwärts >>
fertig
Fertig! Dieser Text wurde zweimal anhand der Quelle Korrektur gelesen. Die Schreibweise folgt dem Originaltext.
Drahtförmiger Leiter. Das Ohm’sche Gesetz.


von ihrem Anfangspunkte bis zu einem unbestimmten Punkte hin durchlaufene Bogen mit bezeichnet werden. Der Querschnitt braucht zwar nicht überall derselbe zu sein. Doch setzen wir fest, dass bei einer stetigen Aenderung von auch die Aenderungen des Querschnittes nur stetig vor sich gehen, so dass man an jeder Stelle zwei Querschnitte einander hinreichend nahe legen kann, die von einander und von allen zwischenliegenden Querschnitten nur unendlich wenig abweichen. Zwischen je zwei solchen Querschnitten kann der Draht als ein Cylinder von beliebig gestaltetem, aber unverändertem Querschnitt angesehen werden.

 Wir betrachten zunächst nur einen solchen Cylinder an einer beliebigen Stelle des Drahtes. Die Axe dieses Cylinders soll zu den Dimensionen des Querschnittes in endlichem Verhältnis stehen. Wir dürfen sie deshalb als geradlinig ansehen und legen in sie die Axe der des rechtwinkligen Coordinatensystems. Die normalen Querschnitte sind also zur -Ebene parallel. Da die Dimensionen jedes Querschnittes unendlich klein sind, so dürfen wir die Strömung in seiner Ebene vernachlässigen im Vergleich zu der Strömung, die normal gegen diese Ebene gerichtet ist. D. h. wir dürfen in jeder Richtung, die in die Ebene eines Querschnittes fällt, die specifische Stromintensität gleich Null setzen:


(1)


Ferner dürfen wir in einem und demselben Querschnitt jede der Componenten und den specifischen Widerstand constant nehmen. Nun folgt aber aus (1) und aus den Gleichungen (2) des §. 59:



d. h. für jeden Punkt innerhalb desselben Querschnittes:



Da aber in jedem Querschnitt und unendlich klein sind, so hat man kürzer



Die erste der Gleichungen (2) des §. 59 gibt hiernach:


(2)


Nun ist nur von abhängig, und ebenso hat nach der Voraussetzung in allen Punkten desselben Querschnittes denselben