Schwere, Elektricität und Magnetismus:177

Bernhard Riemann: Schwere, Elektricität und Magnetismus
Seite 163
<< Zurück Vorwärts >>
fertig
Fertig! Dieser Text wurde zweimal anhand der Quelle Korrektur gelesen. Die Schreibweise folgt dem Originaltext.
Das nicht freie System.


(7)




Hierin ist der Reihe nach zu setzen. Dann sind die Gleichungen (7) nichts anderes als die Differentialgleichungen der Bewegung, wie sie aus dem Prinzip des Lagrange hervorgehen.


§. 40.
Das nicht freie System.


 Das System der Punkte ist nicht frei, wenn zwischen den Punkten oder zwischen einigen von ihnen, solche Verbindungen vorhanden sind, vermöge deren die einzelnen Punkte zu anderen Bewegungen gezwungen werden, als sie bloss unter dem Einfluss der auf sie wirkenden Kräfte ausgeführt hätten. Dieser Fall soll jetzt betrachtet werden.

 Nehmen wir den Punkt von der Masse . In Folge der vorhandenen Verbindungen vollführt er eine andere Bewegung, als wenn er frei und nur dem Antriebe der Kraftcomponenten ausgesetzt wäre. Es fragt sich dann, welche Kräfte man noch hinzufügen müsse, damit sie mit jenen Componenten zusammen den völlig frei gedachten Punkt gerade in die Bewegung versetzen, die wirklich zu Stande kommt. Kennt man diese Zusatzkräfte für jeden Punkt, so kann man die Bewegung des Systems aus einem doppelten Gesichtspunkte betrachten. Einmal kommt sie wirklich zu Stande unter Einwirkung der gegebenen bewegenden Kräfte und der vorhandenen Verbindungen. Das andere mal würde sie in genau derselben Weise zu Stande kommen, wenn die Punkte des völlig frei gemachten Systems von den gegebenen Kräften und von den eben betrachteten Zusatzkräften getrieben würden. Da nun die Wirkung in beiden Fällen dieselbe ist, und nur die Wirkung in Betracht kommt, so hat man das Recht, die eine Ursache durch die andere zu ersetzen. D. h. man darf die Bewegung so auffassen, als ob die Punkte des Systems frei wären und ausser den gegebenen Kräften noch die Zusatzkräfte in Wirksamkeit träten. Die gegebenen Kräfte sollen