Seite:WienRel.djvu/34

Fertig. Dieser Text wurde zweimal anhand der Quelle korrekturgelesen. Die Schreibweise folgt dem Originaltext.

lassen sich ebenso durch einen Vektor darstellen, der mit in der Weise zusammenhängt, daß

usw. ist.

Bei der Lorentztransformation verändern sich die Feldvektoren in folgende

Minkowski führt noch den Nachweis, daß in einem solchen Raum von vier Dimensionen die Transformationen der Relativitätstheorie auf einfache geometrische Konstruktionen führen.

Fig. 3

Man hat zu diesem Zwecke im Raum von vier Dimensionen ein Gebilde zu konstruieren, das einem Hyperboloide entspricht und durch die Gleichung dargestellt wird. In der -Ebene schneidet dieses Gebilde eine Hyperbel aus. Irgendeine gerade Linie R (Fig. 3) repräsentiert eine konstante Geschwindigkeit weil sie konstant ist. Wo diese Linie die Hyperbel schneidet (im Punkte A) hat man eine Tangente an die Hyperbel zu legen und durch den Anfangspunkt der Koordinaten O eine Parallele zu ihr zu ziehen (P). Die Linien R und P bilden nun ein schiefwinkliges Koordinatensystem, in welchem die Hyperbel durch eine Gleichung von derselben Form ausgedrückt wird, wie in dem ursprünglichen. Die Transformation von dem einen Koordinatensystem auf das andere enthält sämtliche Transformationen der Relativitätstheorie. Hierbei repräsendiert das eine Koordinatensystem in bezug auf das andere eine Bewegung mit der Geschwindigkeit . Je nachdem man das eine oder das andere Koordinatensystem wählt, nimmt man dieses als ruhend an. Es ist also die Zeit mit den Raumdimensionen ebenso fest verbunden wie diese untereinander und man kann von einem Raum als solchem nur etwa in dem Sinne sprechen wie bisher von zweidimensionalen Gebilden. Vgl. H. Minkowski, Ann. d. Phys. 47; S. 927; 1915.

Empfohlene Zitierweise:
Wilhelm Wien: Die Relativitätstheorie vom Standpunkte der Physik und Erkenntnislehre. Johann Ambrosius Barth, Leipzig 1921, Seite 34. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:WienRel.djvu/34&oldid=- (Version vom 1.8.2018)