Seite:NewtonPrincipien.djvu/650

Dieser Text wurde anhand der angegebenen Quelle einmal korrekturgelesen. Die Schreibweise sollte dem Originaltext folgen. Es ist noch ein weiterer Korrekturdurchgang nötig.

später ein, in welcher der Mond sich rechtläufig im Mittel um 19° 35' und die Sonne nur 1° 28' bewegt, so dass ihr gegenseitiger Abstand 18° 7' beträgt. Legt man zu den vorstehenden 36 Stunden die sogenannte Hafenzeit in Bristol von 7 Standen, so kommen die im Text aufgeführten 43 heraus.

Fig. 268.

No. 284. S. 450. Befindet sich die Sonne in S, d. h. im Widderpunkte, ist L ein Solstitialpunkt, also SL = 90°, LL' = 18,°5, also der Mond um 18,°5 von der Quadratur entfernt; so ist sin L'a = sin 108°,5 sin 23° 27' = 22° 14'. Einmal ist die Kraft des Mondes in L' im Verhältniss cos L'a : 1 kleiner, ab wenn jener sich im Aequator befände. Ferner in demselben Verhältniss die Centripetalkraft und

Fig. 269.

daher auch die Centrifugalkraft in L kleiner als in a; mithin durch Zusammensetzung die Kraft des Mondes in L' im Verhältniss (cos L'a)² : 1 = (cos 22° 14')² : 1 kleiner als im Aequator.

Fig. 270.

No. 285. S. 451. Ist A der Ort des Mondes in der Syzygie, C der in der Quadratur, so hat man nach den Angaben im Texte, wenn die Erde sich in T befindet, die halbe grosse Axe TA = a = 70, die halbe kleine CT = b = 69. Wenn nun der Winkel ATa = CTc = 18,°5, aT = z, cT = a gesetzt wird, so wird unmittelbar nach den Formeln der Ellipse z² sin² 18,°5

= (a² — z² cos² 18,°5) und

z² = . Substituirt man hier die Werthe von a und b, so ergibt sich z = aT = 69,897530 nahe mit dem Text übereinstimmend. Mutatis mutandis, wird u² = und u = 69,098740.

No. 286. S. 451. Ich erhalte aus den Werthen im Texte die Verhältnisse 0,9827797 : 1 und 1,0172410 : 1.

Empfohlene Zitierweise:
Isaac Newton: Mathematische Principien der Naturlehre. Robert Oppenheim, Berlin 1872, Seite 642. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:NewtonPrincipien.djvu/650&oldid=- (Version vom 1.8.2018)