m(s), m(n) respective entsprechenden Zeiten bezeichnen, weil m(n) der m(s) entgegengesetzt ist und daher t(s) durch t(n) verkürzt wird, t(s) : t(s) – t(n) = α · AT² + AZ² : α · AT².
No. 259. S. 433. Es ist
1. dZ · ZY : ATa = AZ² : α · AT² + AZ² = t(n) : t(s),
da aber ATa = ½Aa · AT und Aa : YZ = AT : AZ, also Aa = ; so wird dZ · ZY : ATa = dZ · ZY : ½ = dZ · BZ : ½AT² und es geht die Proportion 1. über in
2. dZ : ½AZ = AT² : α, AT² + AZ².
dZ · ZY entspricht t(n), d. h. den durch die Knotenbewegung hervorgebrachte Decrement der Zeit, während der durch ATa dargestellten Zeit; NdZ stellt das, dem Sector ATN entsprechende Decrement dar und da NATN die ganze unverkürzte Zeit darstellte, so wird NATN – NdZ die ganze, vermöge der Knotenbewegung verkürzte Zeit darstellen.
No. 260. S. 434. Wir haben im Text aZ : AZ = AZ² : α · AT² + AZ² = t(n) t(s), also auch aZ · ZY : AZ · ZY = t(n) : t(s) oder aZN : AZN = T(n) : T(s), wo T(n) und T(s) die Summen aller t(n) und t(s) bezeichnen. Es wird auch aZN · AZN – aZN = aZN : NAa = T(n) : T(s) – T(n).
No. 261. S. 434. (Fig. 197.) Setzt man TZ = x, ZA = y, Za = y : TA = rα wie vorhin, α' = α + 1; so ist nach der frühern Proportion. (Bem. 260.) aber y² = r² – x², also y' =
|
|
|
|
|