No. 126. S. 268. (Fig. 154.) Man kann hier 2 AB · AP statt AP setzen, weil 2AB constant ist.
No. 127. S. 268. Es ist nämlich DPQ = , also proportional PQ, weil ½DB constant ist.
No. 128. S. 269. Die Gleichung der Hyperbel in Bezug auf ihren Mittelpunkt ist nämlich allgemein y² = (x² — a²). Im vorliegenden Falle ist aber y = TG, x = DG, b = BD = DF = a, GT² = DG² — DF².
No. 129. S. 273. (Fig. 160.) Offenbar ist V der mit dem Radius DA, aus D als Mittelpunkt beschriebene Bogen AG.
No. 130. S. 273. Eigentlich DET². Es ist aber DET = ½ET · DE = ½ V, also, insofern DE = DB und auch DA constant sind, DET² proportional V².
No. 131. S. 276. Es ist unmittelbar TQ : PD = TS : PE. Fällt nun Q mit P zusammen, so geht gleichzeitig T in P über und man kann PS statt TS setzen; es entsteht daher
No. 132. S. 276. (Fig. 161.) OP und OQ stehen nach der Voraussetzung auf der Spirallinie perpendikulär, und wenn die Punkte P und Q einander unendlich nahe liegen, werden beide sich auf dem Kreise befinden, welcher aus O mit OP = OQ als Radius geschlagen ist. Indem man in diesem Falle den unendlich kleinen Bogen PQ statt seiner Sehne setzt, ergibt sich nach bekannter Weise PD : PQ = PQ : 2PO.
No. 133. S. 277. Bezeichnet man die gleichen Winkel durch α, so wird, in so fern man die kleinen Bogen PQ und Qr als gerade Linien behandeln darf, PSQ = ½PS · PQ sin α, QSr = ½QS · Qr sin α und daher, weil PSQ = QSr, PQ : Qr = QS : PS.
No. 134. S. 277. (Fig. 161.) Es ist SV — SQ = VQ, also SP = SQ + VQ, wo VQ desto klein er wird, je näher P und Q einander kommen. Demnach wird SP — = SQ + VQ —
=
Je kleiner nun VQ wird, desto mehr wird man die folgenden, höhere Potenzen von VQ enthaltenden, Glieder gegen das erste vernachlässigen können, und wir erhalten daher den Grenzwerth von SP — = ½VQ.
No. 135. S. 277. Diese Aehnlichkeit dürfte folgendermaassen zu erläutern sein. Da SV = SP, so ist SVP = SPV.
Isaac Newton: Mathematische Principien der Naturlehre. Robert Oppenheim, Berlin 1872, Seite 602. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:NewtonPrincipien.djvu/610&oldid=- (Version vom 1.8.2018)