Seite:NewtonPrincipien.djvu/607

Dieser Text wurde anhand der angegebenen Quelle einmal korrekturgelesen. Die Schreibweise sollte dem Originaltext folgen. Es ist noch ein weiterer Korrekturdurchgang nötig.

No. 109. S. 250. Aus AP² = AC · AK, folgt, weil AC constant ist, 2AP · d · AP = AC · d · AK   d. h. 2AP · PQ = AC · KL oder KL : PQ = 2AP : AC.

No. 110. S. 253. (Fig. 144.) Da HJ² = HM² + MJ² und HN² = HM² + (MJ — JN)² so wird ; , und weil JN sehr klein ist oder HJ — HN = .

No. 111. S. 253. Es ist beliebig MJ = Qξ + Rξ² + Sξ³ .... angenommen worden, hieraus folgt unmittelbar, weil NJ = MJ — MN und MN = Qξ ist, NJ = Rξ² + Sξ³ + etc.

Der Werth von MJ gilt allgemein für jeden Werth von ξ, mithin wird der entsprechende Werth in E für ξ = 2ξ 2Qξ + 4Rξ² + 8Sξ³ etc. in B für E = — ξ, — Qξ + Rξ² — Sξ³ und so DJ = CH — MJ = P — Qξ — Rξ² — Sξ³; EK = CH — 2Qξ — 4Rξ² — 8Sξ³ — etc. = P — 2Qξ — 4Rξ² — 8Sξ³ — etc. BG = P + Qξ — Rξ² + Sξ³ — etc.

No. 112. S. 254. Nach Gl. 12. und 10. ist (Fig. 144.) · GH =

nach Gl. 10. nach Gl. 8. 9. und 10.

mithin und nach 6. der Widerstand : Schwere .

No. 113. S. 254. Für CH als Durchmesser ist nämlich NJ = x die Abscisse, HN = y die Ordinate, und da allgemein die Gleichung der Parabel y² = px ist, .

No. 114 S. 254. Im Anfang dieses Paragraphen haben wir gesehen, dass die Zeit, in welcher der Körper den Bogen beschreibt, im halben Verhältniss der Höhe NJ steht, welche der Körper

Empfohlene Zitierweise:
Isaac Newton: Mathematische Principien der Naturlehre. Robert Oppenheim, Berlin 1872, Seite 599. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:NewtonPrincipien.djvu/607&oldid=- (Version vom 1.8.2018)