Seite:NewtonPrincipien.djvu/603

Dieser Text wurde anhand der angegebenen Quelle einmal korrekturgelesen. Die Schreibweise sollte dem Originaltext folgen. Es ist noch ein weiterer Korrekturdurchgang nötig.

No. 82. S. 231. Ist die ganze Zeit t = nτ gesetzt, wo n beliebig gross, so bilde man folgendes Tableau:

Zeittbeile: τ, 2τ, 3τ, 4τ, etc. . .
Geschwindigkeiten: v, vI, vII, vIII, etc.
Decremente der Geschwindigkeit: av, avI, arII, avIII, etc.

Alsdann ist

v — av = vI, vI — avI = vII, vII — avII = vIII, vIII — avIII = vIV = etc.,

also auch

v : v — vI = vI : vI — vII = vII : vII - vIII = vIII : vIII — vIV = etc. =

und nach §. 2. v : vI = vI : vII = vII : vIII = vIII : vIV = etc.

No. 83. S. 231. Aus dem vorhergehenden Tableau erhält man z. B.

eben so vIV : vVIII = ; mithin vIV = a4v, vVIII = a4 · vIV = a8 · v.

No. 84. S. 231. (Fig. 133.) Setzt man CD = x und DG = y, so ist die Gleichung der Hyperbel

1.   xy = a, wo a constant,

Die hyperbolische Fläche wird daher

2.    = a log. hyp. x = log. hyp. (xa).

Eine zweite hyperbolische Fläche sei

3.   AI = log. hyp. (xIa)

Setzt man nun voraus, dass AI — A = Constans sei, so wird offenbar log. (xIa) — log. (xa) = log. = Constans oder auch

4.   xI : x = Constans.

No. 85. S. 233. (Fig. 135.) Nach den Lehren der Kegelschnitte ist für eine Hyperbel CK · Kq = CA · AB = Constans, also CK : CA = AB : Kq, CA : CA — CK = Kq : Kq — AB, d. h. CA : AK = Kq : qk und hieraus CA : ½AH = Kq : ½qk.

No. 86. S. 233. Es ist nämlich

ABHC : KkHC = AC : KC = AC : AC — AK.

No. 87. S. 234. Wenn

ANtB — AMsB = AMsB — ALrB = ALrB — AKqB = AKqB

ist, so wird auch

ABHC — ABnN : ABHC — ABmM = ABHC — ABmM : ABHC — ABlL = ABHC — ABlL : ABHC — ABkK

d. h.

CN : CM = CM : CL = CL : CK

wie aus der Bemerkung 84. hervorgeht.

Empfohlene Zitierweise:
Isaac Newton: Mathematische Principien der Naturlehre. Robert Oppenheim, Berlin 1872, Seite 595. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:NewtonPrincipien.djvu/603&oldid=- (Version vom 1.8.2018)