Seite:NewtonPrincipien.djvu/589

Fertig. Dieser Text wurde zweimal anhand der Quelle korrekturgelesen. Die Schreibweise folgt dem Originaltext.

No. 19. S. 76. Wegen der Proportionalität zwischen den Zeiten und den in ihnen beschriebenen Flächenräumen, möge die Fläche OT · SP in der Zeiteinheit beschrieben sein, die ganze Fläche E der Ellipse in T solchen Einheiten beschrieben werden; alsdann ist 1 : T = QT · SP : E also E = T · QT · SP = T.

No. 20. S. 77. Ist dieser grösste oder kleinste Abstand = c, so ist die Geschwindigkeit im Kegelschnitt proportional, im betreffenden Kreise ist der Parameter = 2c, mithin die Geschwindigkeit in demselben proportional; es verhält sich daher die erstere Geschwindigkeit zur letzteren, wie .

Principien1872-581.png

Fig. 230.

No. 21. S. 77. Die Abstände Sc und SC sind respective a und A, die Perpendikel Sd und SD b und B, die Parameter l und L hier und , die Geschwindigkeiten v und V; demnach und auch .

No. 22. S. 78. Ist der Parameter = p, die Geschwindigkeit im Kegelschnitt = V, die im ersten Kreise = k, die im zweiten = K, der Abstand in diesem und im Kegelschnitt = r, das Perpendikel auf die Tangente = T; so hat man, nach Zusatz 8. V : k = ½p : T nach §. 18., Zusatz 6. , mithin .

Principien1872-581b.png

Fig. 231.

No. 23. S. 83. Setzen wir die zu B gehörende Abscisse AM = x, die Ordinate BM = y, den Radius vector BS = r; so wird bekanntlich v² = (1 – e²)(2ax – x²) wo e die Excentricität der Ellipse ausdrückt, ferner weil AS = a(1 – e)r² = y² + (AS – x)² = (1 – e²) (2ax – x²) + (a(1 – e) – x)² und hieraus nach gehöriger Reduction

1.     r = ex + (1 – e)a

und eben so, wenn AN = x1, CN = y1, SC = r1 gesetzt wird.

2.     r1 = ex1 + (1 – e)a.

Da nun, wenn wir AG durch d bezeichnen, BK = d + x, LC = d + x1 nach Prop. 2. d + x : r = 2a : 2ae = 1 : e, so folgt

Empfohlene Zitierweise:
Isaac Newton: Mathematische Principien der Naturlehre. Robert Oppenheim, Berlin 1872, Seite 581. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:NewtonPrincipien.djvu/589&oldid=3354863 (Version vom 1.8.2018)