Seite:NewtonPrincipien.djvu/586

Fertig. Dieser Text wurde zweimal anhand der Quelle korrekturgelesen. Die Schreibweise folgt dem Originaltext.
Principien1872-578.png

Fig. 224.

No. 2. S. 52. Setzt man den Bogen AB = α, Ab = β, so wird für den Radius AM = 1, BD = AC = sin vers. α = 1 – cos. α = 2 sin ½α² AB = 2 sin AGB = 2 sin ½α und eben so bd = 2 sin ½β²; Ab = 2 sin ½β. Werden nun α und β verschwindend klein, so wird BD = ½α², AB = α, bd = ½β², Ab = β, demnach jetzt: AB² : Ab² = α² : β² = BD : bd.

No. 3. S. 52. Weil , so wird AD² = Constans. DB, und daher für AC = DB als Abscisse, BC = AD die zugehörige Ordinate in einer Parabel. Ferner ist nach den Gesetzen der Parabel die krummlinige Figur ABC = ⅔ ACBD und daher die krummlinige Figur ABD = ⅓ ABCD = ⅔ Δ ABD.

No. 4. S. 56. (Dortige Figur). Da nämlich CV ∥ AB und Cc ∥ BV, so ist CVBc ein Parallelogramm, also CV = Bc = AB, und da auch CV ∥ AB, so wird ABCV ebenfalls ein Parallelogramm, dessen Diagonale BV nach der Construction den Mittelpunkt S trifft.

No. 5. S. 57. Da AB = BG ist, hat man Δ SAB = SBc. Nach der Voraussetzung ist SAB = SBC, also SBC = SBc, mithin Cc ∥ SB. Längs BS muss auch die Centripetalkraft gerichtet sein, welche bewirken soll, dass der Körper, statt von B längs Bc fortzugehen, nach C hin abgesenkt werde.

No. 6. S. 59. Setzt man die Umlaufszeiten in zwei Kreisen = T, t, die Radien = R, r; so würden die in der Zeiteinheit beschriebenen Bogen , . Das in §. 18. enthaltene Verhältniss geht daher über .

No. 7. S. 60. Werden die Centripetalkräfte durch F, f, die Geschwindigkeiten durch V, v bezeichnet; so ist nach dem Lehrsatz und nach Zusatz 2. und da hier T²:t² = R³:r³; so wird . Ferner geht die Proportion hier über in .

No. 8. S. 60. Setzt man allgemein die Schwerkraft = 2g, so wird bekanntlich ein vermöge derselben beschriebener Weg f = gt³. Setzt man nun die Zeit t = 1, und wird während derselben Zeit der Bogen a des Kreises beschrieben, so gehört zu demselben die Fallhöhe g

Empfohlene Zitierweise:
Isaac Newton: Mathematische Principien der Naturlehre. Robert Oppenheim, Berlin 1872, Seite 578. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:NewtonPrincipien.djvu/586&oldid=3354860 (Version vom 1.8.2018)