Die Aufgabe wird arithmetisch gelöst, indem man bewirkt, dass die Bahn, welche der Körper bei seiner Bewegung in der beweglichen Ellipse wie in Zusatz 2. und 3. des §. 84. in der festen Ebene beschreibt, der Form nach sich derjenigen Bahn nähere, deren Apsiden man sacht, und alsdann die Apsiden der Bahn bestimmt, welche der Körper in der festen Ebene beschreibt. Bahnen erhalten aber dieselbe Form, wenn die Centripetalkräfte, vermöge welcher sie beschrieben werden, unter einander verglichen, in gleichen Abständen proportional gemacht werden.
Es sei V die obere Apside und man setze
einen andern Abstand
und den Unterschied der Abstände
Die Kraft, vermöge welcher ein Körper in der Ellipse um den Brennpunkt C (wie in §. 84., Zusatz 2.,) sich bewegt, ist proportional
Setzt man nun im Zähler, nach Gl. 1.
so wird die Centripetalkraft proportional
Man reducire auf gleiche Weise jede andere Centripetalkraft auf einen Bruch, dessen Nenner A³ ist, und setze, durch Vergleichung der homologen Glieder, die Zähler identisch gleich.
Beispiele werden die Sache klarer machen.
Beispiel 1. Gesetzt, die Centripetalkraft sei gleichförmig, also proportional
oder indem man im Zähler A = T — X setzt,
alsdann erhält man, indem man die homologen Glieder, d. h. gegebene mit gegebenen und unbekannte mit unbekannten (in 3.) vergleicht :
oder
Setzt man nun die Bahn sehr nahe kreisförmig, so wird
die letzten Verhältnisse werden in diesem Falle:
oder
d. h.
Isaac Newton: Mathematische Principien der Naturlehre. Robert Oppenheim, Berlin 1872, Seite 147. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:NewtonPrincipien.djvu/155&oldid=- (Version vom 1.8.2018)