Weber’s Grundgesetz.
vorher auf einerlei Maass gebracht werden. Wir können z. B. in elektrostatisches Maass einführen. Dies geschieht, indem wir in (12) und (13) statt und statt schreiben. Die Grösse ist eine durch Experiment zu bestimmende Constante. Hiernach erhalten wir schliesslich das Potential zwei elektrischer Theilchen:
(I)
|
|
Dieser Ausdruck führt auf Weber’s Grundgesetz der Wechselwirkung zwischen zwei elektrischen Theilchen. Wir wollen dasselbe im nächsten Paragraphen ableiten.
§. 97.
Weber’s Grundgesetz.
Wir haben angenommen, dass bei der Wechselwirkung zwischen elektrischen Theilchen der Satz von der Erhaltung der lebendigen Kraft in Gültigkeit sei. Folglich geht die Bewegung so vor sich, dass der erweiterte Satz von Lagrange (§.95) erfüllt ist, neinlich
(1)
|
|
Wir nehmen nur zwei elektrische Theilchen, die in den Punkten und concentrirt sind. Ihre Elektricitätsmengen seien und , ihre Massen und . In diesem Falle ist
|
|
Danach erhalten wir
|
|