Die elektrischen Kräfte/Zusammenstellung:§54
« Zusammenstellung:§53 | Carl Gottfried Neumann Die elektrischen Kräfte |
Zusammenstellung:§55 » | |||
Fertig! Dieser Text wurde zweimal anhand der Quelle Korrektur gelesen. Die Schreibweise folgt dem Originaltext.
| |||||
Für eine seitenweise Ansicht und den Vergleich mit den zugrundegelegten Scans, klicke bitte auf die entsprechende Seitenzahl (in eckigen Klammern).
|
„Befinden sich im Innern eines starren Körpers irgend welche, etwa Solenoide, so ist die gegenseitige Einwirkung zwischen diesem Körper und einem gegebenen Stromelement von solcher Beschaffenheit, als wären zwischen jedem Solenoidpol und dem Elemente zwei diametral entgegensetzte [gegen die Ebene senkrecht stehende] Kräfte
(73.) |
vorhanden, erstere einwirkend auf einen Punct des Elementes, letztere auf einen unendlich nahe an gelegenen Punct des Körpers.“
Dieser in (61.) gefundene Satz ist einer gewissen Umgestaltung fähig, von welcher hier die Rede sein soll. Zuvörderst sei bemerkt, dass für die Componenten , und jener Kräfte (73.) die Formeln gelten [vergl. (59.)]
(74.) |
wo die Coordinaten von , andererseits die Coordinaten von , mithin auch diejenigen von vorstellen.
Die Gesammtheit der 2 Kräfte , oder (mit andern Worten) die vom Elemente auf den Körper ausgeübte Wirkung, soll näher untersucht werden. Ohne dass in dieser Wirkung eine Aenderung entsteht, kann jede Kraft sich selber parallel im Innern des Körpers beliebig verlegt werden, vorausgesetzt, dass man ein geeignetes Drehungsmoment hinzufügt.
So ist z. B. die irgend einem speciellen Pole entsprechende Kraft aequivalent mit den drei Kräften
wo unter und zwei einander entgegengesetzte, in angreifende Kräfte zu verstehen sind, von denen die erstere mit von gleicher Richtung und Stärke sein soll. Mit andern Worten: Es ist
(75.) |
(76.) |
Hieraus erhält man durch Substitution von (74.) successive
wo die Charakteristik den Componenten des gegebenen Stromelementes entspricht; so dass also statt auch geschrieben werden kann . Somit erhält man schliesslich:
(77.) |
Wird nun jede der Kräfte nach dem Schema (75.) behandelt, so wird die von auf dem Körper ausgeübte Wirkung ausgedrückt sein durch in den einzelnen Polen angreifende Kräfte , und daneben durch Drehungsmomente .
Gehört das Element einem geschlossenen gleichförmigen Strome an, und soll die Wirkung dieses ganzen Stromes auf den Körper K ermittelt werden, so sind die Momente fortzulassen; denn die Ausdrücke (77.), integrirt über alle Elemente eines solchen Stromes, geben Null. Somit haben wir folgenden Satz:
Sind im Innern eines starren Körpers irgend welche Solenoide enthalten, und ist ausserhalb des Körpers ein geschlossener gleichförmiger Strom gegeben, so wird die gegenseitige Einwirkung zwischen Strom und Körper von solcher Beschaffenheit sein, als wären zwischen jedem| Stromelement und jedem Solenoidpol zwei Kräfte von gleicher Stärke und entgegengesetzter Richtung(78.) |
vorhanden, erstere einwirkend auf einen Punct des Elementes, letztere auf den Pol .
Von diesen beiden Kräften, welche senkrecht stehen gegen die Ebene , ist die erstere diejenige, welche bereits in (59.) und (60.), hinsichtlich ihrer Componenten, ihrer Stärke und ihres Sinnes, näher besprochen wurde.
Dieses Gesetz, nach welchem die zwischen Solenoidpol und Stromelement vorhandenen Kräfte nach zwei parallelen respective durch Pol und Element gehenden Linien wirken (zusammengenommen also ein sogenanntes Kräfte-Paar bilden), wird zu bezeichnen sein als ein scheinbares Gesetz, welches nur für den Fall eines geschlossenen gleichförmigen Stromes mit dem wirklichen aequivalent ist. Von diesem scheinbaren Gesetz unterscheidet sich jenes wirkliche in sehr beträchtlicher Weise; denn letzteres (61.) sagt aus, dass die genannten Kräfte beide nach ein und derselben Linie wirken, nach einer Linie, welche durch das Stromelement geht.
Mit dem scheinbaren Gesetze (78.) steht in enger Verbindung ein von Biot und Savart erhaltenes Resultat[1]. Diese Physiker folgerten nämlich aus ihren experimentellen Untersuchungen, dass das Element eines gleichförmigen geschlossenen Stromes auf einen Magnetpol eine Kraft ausübe, welche in diesem Pole ihren Angriffspunct hat, und überhaupt hinsichtlich ihrer Richtung und Stärke identisch sei mit der in (78.) besprochenen Kraft .
- ↑ Man vergl. Ampère: Théorie des Phén. elektrody. Paris, 1826, pag, 149.