Seite:Kreisbewegungen-Coppernicus-0.djvu/261

Fertig. Dieser Text wurde zweimal anhand der Quelle korrekturgelesen. Die Schreibweise folgt dem Originaltext.

betragen, von denen die Einheit ist; sei der Durchmesser des Schattens an der Stelle des Durchganges des Mondes, sei der Durchmesser des Mondes, rechtwinklig gegen und werde bis verlängert. Zuerst soll nun das Verhältniss von zu gefunden werden. Da der Winkel 31′ 20″ beträgt, so ist die Hälfte gleich 15′ 40″ und der Winkel bei ist ein Rechter. In dem Dreiecke sind also die Winkel gegeben, und folglich auch das Verhältniss der Seiten zu , und seiner Länge nach 1733/60 Sechzigstel solcher Theile, von denen 64⅙ oder einen Theil enthält; und weil sich zu verhalten soll wie 5 zu 13: so enthält 4538/60 Sechzigstel derselben Theile. Da aber und in gleichen Abständen mit parallel sind: so ist und zusammen doppelt so gross als ; zieht man davon und ab: so bleibt gleich 5649/60 Sechzigstel. Nach dem zweiten Lehrsatze des sechsten Buches Euklid’s verhalten sich zu , zu und zu wie zu , d. h. wie 60 zu 5649/60[1]. Ebenso ergiebt sich zu 5649/60, wenn 60 ist, und der Rest zu 311/60. Insofern aber 64⅙ solcher Theile enthält, deren einer ist: so kommen auf 1210. Nun hat sich schon gezeigt, dass 4538/60 Sechzigstel solcher Theile enthält, und es besteht das Verhältniss zu wie zu , folglich enthält auch 1422/60 Sechzigstel von ; und umgekehrt, wenn 64⅙ enthält: so kommen auf , als auf die Axe des Schattens, 268.[2]. So Ptolomäus. Andere aber, nach Ptolomäus, stellten, als sie fanden, dass dies den Erscheinungen nicht genügend entspreche, gewisse andere Annahmen auf. Nichts desto weniger behaupten sie, dass die grösste Entfernung des vollen und neuen Mondes von der Erde 64⅙ Erdradien sei, der scheinbare Durchmesser der Sonne im Apogeum 31′ 20″ betrage und sich zu dem Durchmesser des Schattens an der Stelle des Durchgangs des Mondes verhalte, wie 13 zu 5, ganz wie Ptolomäus selbst. Sie sagen jedoch, dass der scheinbare Durchmesser des Mondes alsdann nicht grösser sei als 29½′, setzen deshalb den Durchmesser des Schattens gleich 1° 16′ 45″, glauben, dass hieraus die Entfernung der Sonne von der Erde gleich 1146 und die Axe des Schattens gleich 254 Erdradien folge, und schreiben diese Entdeckung, welche jedoch nicht begründet werden kann, jenem aratäischen Philosophen[3] zu. Wir haben aber dies so in Ordnung bringen und verbessern müssen, dass wir den scheinbaren Durchmesser der Sonne im Apogeum zu 31′ 40″ ansetzten, (er muss nämlich gegenwärtig etwas grösser sein, als vor Ptolomäus); denjenigen des vollen und neuen Mondes aber, und zwar in seiner grössten Abside, zu 30′ und denjenigen des Schattens an der Stelle des Durchganges des Mondes zu 80′ 36″: denn es passt besser, dass dies Verhältniss wie 150 zu 403, also etwas grösser ist, als 5 zu 13. Die ganze Sonnenscheibe kann aber vom Monde nur dann bedeckt werden, wenn dieser von der Erde um 62 Erdhalbmesser absteht. Wenn man dies so annimmt, so scheint es sowohl unter sich als auch mit dem Uebrigen in zuverlässiger Weise zusammenzuhängen und mit den Erscheinungen der Sonnen- und Mondfinsternisse übereinzustimmen. Wenn wir

Anmerkungen [des Übersetzers]

  1. [46] 326) Die Säc.-Ausg. liest hier 60:5859/60, während es nach der kurz vorhergehenden Berechnung heissen muss 60:5649/60. Die Baseler Ausgabe hat 60:5848/60. Die gleich nachfolgende Bestimmung von und lässt über die Richtigkeit der Lesart 5649/60 keinen Zweifel übrig; denn wenn
    = 60 : 5649/60
    so muss auch = 60 : 5649/60
    oder = 60 - 5649/60 : 60
    oder = 311/60 : 60
  2. [47] 327) Diese Zahl müsste richtiger lauten 253, denn
    = 1422/60 : 60
    oder 641/6 : = 1422/60 : 60, was für = 252,9 ergiebt.
  3. [47] 328) Diese Behauptung stützt sich auf das Ende des Cap. 30 des Liher Machometi Geber, qui vocatur Albategni. 1537.