lassen, indem von den Zeichen mit Indizes solche mit einem Index 4 stets rein imaginäre Werte, solche mit keinem Index 4 oder mit zwei Indizes 4 stets reelle Werte bedeuten werden.
Ein einzelnes Wertsystem bes. soll ein Raum-Zeitpunkt heißen.
Ferner bezeichne den Vektor Geschwindigkeit der Materie, die Dielektrizitätskonstante, die magnetische Permeabilität, die Leitfähigkeit der Materie, sämtlich als Funktionen von (oder ) gedacht, weiter die elektrische Raumdichte, einen Vektor „elektrischer Strom“, zu dessen Definition wir erst in der Folge (in § 7 und 8) kommen werden.
Erster Teil. Betrachtung des Grenzfalles Äther.
§ 2. Die Grundgleichungen für den Äther.
Die Lorentzsche Theorie führt die Gesetze der Elektrodynamik der ponderablen Körper durch atomistische Vorstellungen von der Elektrizität zurück auf einfachere Gesetze; an diese einfacheren Gesetze knüpfen wir hier ebenfalls an, indem wir fordern, daß sie den Grenzfall der Gesetze für ponderable Körper bilden sollen. In diesem idealen Grenzfalle soll sein und sollen an jedem Raum-Zeitpunkte die Gleichungen bestehen:
(I) |
(II) |
(III) |
(IV) |
Ich will nun schreiben für , weiter
für
Hermann Minkowski: Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern. Weidmannsche Buchhandlung, Berlin 1908, Seite 57. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:Grundgleichungen_(Minkowski).djvu/5&oldid=- (Version vom 1.8.2018)