Schwere, Elektricität und Magnetismus:355

Bernhard Riemann: Schwere, Elektricität und Magnetismus
Seite 341
<< Zurück Vorwärts >>
fertig
Fertig! Dieser Text wurde zweimal anhand der Quelle Korrektur gelesen. Die Schreibweise folgt dem Originaltext.
Fingirte magnetische Belegung der Erdoberfläche.


 Im §. 80 haben wir den wichtigen Satz entwickelt, dass man die unbestimmte räumliche Vertheilung der magnetischen Massen im Innern ersetzen kann durch eine einzige, ganz bestimmte Vertheilung über die Oberfläche. Die Potentialfunction, welche von dieser fingirten Belegung der Oberfläche herrührt, soll zur Unterscheidung mit bezeichnet werden. In einem Punkte der Erdoberfläche oder des äusseren Raumes ist dann


(2)


Im Innern der Erde ist eine einwerthige, endliche und stetige Function des Ortes, dagegen völlig unbestimmt.

 Wir wollen von der fingirten Belegung der Erdoberfläche ausgehen und die davon herrührende Potentialfunction für den ganzen unendlichen Raum herstellen. Es sei ein Element der Erdkugel-Oberfläche und ihr Radius. Wir nehmen Kugelcoordinaten zu Hülfe. Auf einer mit der Erde concentrischen Hülfskugel vom Radius 1 soll der Pol in dem Punkte liegen, welcher von der Axe der positiven getroffen wird, und der Anfangsmeridian soll die Axe der positiven durchschneiden. Wir verbinden einen Punkt, der dem Flächenelement. angehört, mit dem Mittelpunkte der Kugel. Der Radius vector schneidet die Hülfskugel in einem Punkte, dessen Poldistanz und dessen geographische Länge sei. Dann sind die Kugelcoordinaten des erstgenannten Punktes. In diesem Punkte sei die Dichtigkeit der fingirten magnetischen Massenbelegung. Also ist das Quantum magnetischen Fluidums, welches über das Element ausgebreitet ist. In einem
Fig. 49.
Punkte, dessen Kugelcoordinaten sind, denken wir uns die positive Einheit der magnetischen Masse concentrirt. Dieser Punkt, der an einer beliebigen Stelle im äusseren Raume oder im Innern der Erde oder in der Erdoberfläche liegen kann, habe von dem Punkte den Abstand (Fig. 49), und die Radien beider Punkte mögen

den Winkel einschliessen. Dann wird die von der fingirten magnetischen Belegung der Erdoberfläche herrührende Potentialfunction im Punkte definirt durch die Gleichung: