Schwere, Elektricität und Magnetismus:309

Bernhard Riemann: Schwere, Elektricität und Magnetismus
Seite 295
<< Zurück Vorwärts >>
fertig
Fertig! Dieser Text wurde zweimal anhand der Quelle Korrektur gelesen. Die Schreibweise folgt dem Originaltext.
Die elektrodynamische Elementar-Arbeit.


Bei einer unendlich kleinen Verschiebung des Magnets ändert sich der Werth von . Die Aenderung gibt die Arbeit an, welche die von dem Strome ausgeübten magnetischen Kräfte zu leisten haben, um jene Verschiebung zu Stande zu bringen. Nach dem Satze von der Gleichheit der Wirkung und Gegenwirkung findet sich umgekehrt die Wirkung des Magnets auf den Strom.


§. 88.
Die elektrodynamische Elementar-Arbeit. Zwei constante lineäre Ströme.


 Wir haben im §. 86 die Wechselwirkung zwischen zwei Magneten betrachtet. In §. 87 ist für den ersten Magnet ein constanter galvanischer Strom an die Stelle gesetzt. Man kann aber auch noch statt des andern Magnets einen constanten Strom nehmen. Dann handelt es sich um die Wechselwirkung zwischen zwei constanten Strömen. Insofern die dabei geleistete Arbeit zur Bewegung der Ströme mit den Stromleitern verbraucht wird, nennen wir die Wechselwirkung die elektrodynamische.

 Es soll jetzt die Funktion hergestellt werden, deren unendlich kleine Aenderung die elektrodynamische Elementar-Arbeit angibt, welche bei einer unendlich kleinen Verschiebung der beiden Ströme geleistet wird.

 Wir können dabei von der Gleichung (2) des vorigen Paragraphen ausgehen, haben aber jetzt als die Potentialfunction der magnetischen Kraft anzusehen, welche von einem lineären galvanischen Strome ausgeübt wird. Im Punkte sind die Componenten dieser Kraft


(1)


und es ist zu beachten, dass überall ausserhalb des lineären Stromes, von dem sie herrühren, endlich und stetig variabel sind. Nun findet sich



und folglich kann man die Gleichung (2) des vorigen Paragraphen jetzt so schreiben: