Fünfter Abschnitt. §. 62.
und an jeder Stelle der isolirten freien Oberfläche:
(4)
|
|
Folglich bleibt auf der rechten Seite der Gleichung (2) nur noch das Oberflächen-Integral, erstreckt über beide Seiten jeder Unstetigkeitsfläche, übrig:
(5)
|
|
Wir nehmen in irgend einer Unstetigkeitsfläche ein Flächenelement , errichten in einem Punkte desselben die Normale nach beiden Seiten und zählen auf ihr von dem Fusspunkte aus den Abstand positiv nach der einen, negativ nach der anderen Seite. Dann ist auf der Seite der positiven Normale und auf der Seite der negativen Normale . Folglich lässt sich statt der Gleichung (5) auch schreiben:
(6)
|
|
Hier ist die Integration über jede Unstetigkeitsfläche nur einmal zu erstrecken. Nehmen wir aber Rücksicht auf die Gleichung (3) des §. 57, so ergibt sich sofort:
|
|
und danach erhält man statt (6) einfacher:
(7)
|
|
Auch hier ist die Integration über jede Unstetigkeitsfläche nur einmal zu erstrecken. Setzen wir nun speciell voraus, dass in allen Punkten einer und derselben Unstetigkeitsfläche die Resultirende der elektromotorischen Kräfte constant und normal zur Fläche gerichtet sei, so ist für jede einzelne dieser Flächen die Spannungsdifferenz
|
|