Schwere, Elektricität und Magnetismus:238

Bernhard Riemann: Schwere, Elektricität und Magnetismus
Seite 224
<< Zurück Vorwärts >>
fertig
Fertig! Dieser Text wurde zweimal anhand der Quelle Korrektur gelesen. Die Schreibweise folgt dem Originaltext.
Fünfter Abschnitt. §. 57.


(1)





Den Factor nennen wir den specifischen Widerstand des Leiters und die reciproke Grösse seine Leitungsfähigkeit. Die Grösse (und folglich auch ) ist constant für ein und denselben homogenen Leiter. Der Werth derselben ist aber ein anderer, je nachdem der Stoff ein anderer ist, aus welchem der Leiter besteht.


§. 57.
Beharrliche Ströme. Die drei Bedingungsgleichungen für .


 Wir wollen die besondere Voraussetzung machen, dass die scheidende Kraft von der Zeit unabhängig, also für alle Punkte im Innern des betrachteten Leiters eine Function nur von den Raum-Coordinaten sei. Die Componenten der scheidenden Kraft, welche im Punkte auf die dort vorhandenen Elektricitätsmenge einwirkt, sollen mit bezeichnet werden und als Functionen von im Innern des Leiters gegeben sein. In Folge der Scheidung sammelt sich freie Elektricität an. Die davon herrührende Potentialfunction bezeichnen wir mit . Es ist also (§. 45)



Danach sind die Componenten der elektromotorischen Gesammtkraft, welche auf die im Punkte vorhandene Elektricitätsmenge ausgeübt wird, resp.





und diese Componenten haben resp. die Richtung der Axen der , der , der . Für die specifischen Stromintensitäten in denselben Richtungen erhalten wir also, entsprechend den Gleichungen (1) des vorigen Paragrapben, die Ausdrücke: