Schwere, Elektricität und Magnetismus:205
Bernhard Riemann: Schwere, Elektricität und Magnetismus | ||
---|---|---|
Seite 191 | ||
<< Zurück | Vorwärts >> | |
fertig | ||
Fertig! Dieser Text wurde zweimal anhand der Quelle Korrektur gelesen. Die Schreibweise folgt dem Originaltext.
|
des betrachteten äusseren Punktes genannt werden. Ebenso verbinden wir einen Punkt , der ausserhalb der zweiten Kugel liegt, mit dem Mittelpunkte derselben und bezeichnen den Abstand mit . Auf der Verbindungslinie suchen wir dann den Punkt, dessen Entfernung vom zweiten Kugelmittelpunkte an die Bedingung geknüpft ist:
(3) |
Diesen Punkt, der im Innern der zweiten Kugel liegt, nennen wir das Bild des äusseren Punktes.
Denken wir uns nun, die gesuchte Function sei für jeden Punkt des äusseren Raumes bereits hergestellt. Wir setzen sie ins Innere der ersten Kugel so fort, dass
(4) |
ist, und in das Innere der zweiten Kugel so, dass
(5) |
Die Indices und in der Gleichung (4) sollen andeuten, dass es sich um die Werthe der Function in den Abständen und vom ersten Kugelmittelpunkte handelt. Stillschweigend ist dabei vorausgesetzt, dass diese Abstände auf demselben Radius vector gezählt werden und dass sie die Gleichung (2) erfüllen. In entsprechender Weise hat man die Indices in der Gleichung (5) zu verstehen.
Durch die Gleichung (4) kann man sich die zweite Kugel innerhalb der ersten abbilden und hierauf durch die Gleichung (5) von diesem Bilde wieder das Bild innerhalb der zweiten Kugel herstellen. Fährt man auf diese Weise fort, indem man abwechselnd die Gleichungen (4) und (5) in Anwendung bringt, so ergeben sich Bilder, die wir der Reihe nach das erste, zweite und dritte Bild u. s. f. der zweiten Kugel nennen wollen. Es lässt sich leicht beweisen, dass alle Bilder kugelförmig sind, dass jedes folgende kleiner ist als das vorhergehende, und dass von den Bildern innerhalb derselben Kugel jedes folgende ganz innerhalb des vorhergehenden liegt. Wenn man also die Anwendung der Gleichungen (4) und (5) unaufhörlich wiederholt, so gelangt man in beiden Kugeln zu Bildern, deren Rauminhalt kleiner ist als jede angebbare Zahl.