Schwere, Elektricität und Magnetismus:131

Bernhard Riemann: Schwere, Elektricität und Magnetismus
Seite 117
<< Zurück Vorwärts >>
fertig
Fertig! Dieser Text wurde zweimal anhand der Quelle Korrektur gelesen. Die Schreibweise folgt dem Originaltext.
Integration durch complexe Werthe der Variablen.


Schnitt auf der linken (oberen) Seite liegt. Wir lassen dann die Variable von dem Rande des Schnittes aus im Innern des begrenzten Flächenstückes eine Linie stetig durchlaufen, die im Innern oder auf der Begrenzung endigt. Dabei soll, wie wir ferner festsetzen, von den beiden Werthen der Function nur die stetige Fortsetzung des Anfangswerthes in Betracht kommen. Dadurch wird erreicht, dass auf der Linie und im Innern des von ihr begrenzten und von bis zerschnittenen Flächenstückes die Function überall einwerthig, endlich und stetig variabel ist. Nur wenn ist, wird die Function an einer Stelle des Flächenstückes unendlich, nemlich an der Stelles . In diesem besonderen Falle legen wir um den Unstetigkeitspunkt einen Kreis von beliebig kleinem Radius , schliessen das Innere desselben von dem betrachteten Flächenstück aus und lassen schliesslich werden.

 Wir setzen nun einen Fundamentalsatz aus der Theorie der Functionen einer complexen Variablen als bekannt voraus. Derselbe lautet:

 Wenn für alle Werthe von innerhalb eines vollständig begrenzten Gebietes der Zahlenebene und auf der Begrenzung die Function überall einwerthig, endlich und stetig variabel ist, so hat das Integral



ausgedehnt durch die ganze Begrenzung, den Werth Null.

 Ist also von Null verschieden, so hat man folgenden Integrationsweg (Fig. 19):
Fig. 19.
Von bis unendlich nahe an dem Schnitt auf der rechten (unteren) Seite, von bis ebenso auf der linken (oberen) Seite, dann von durch die Linie um herum bis in der Richtung der Pfeile.

 Das Integral auf dem reellen Wege von bis und von bis hat den Werth