Schwere, Elektricität und Magnetismus:037

Bernhard Riemann: Schwere, Elektricität und Magnetismus
Seite 23
<< Zurück Vorwärts >>
fertig
Fertig! Dieser Text wurde zweimal anhand der Quelle Korrektur gelesen. Die Schreibweise folgt dem Originaltext.
Die Function und ihre ersten Derivirten für einen inneren Punkt.


Raumes ganz beliebig gewählt werden kann, oder - was dasselbe sagt - in der Gleichung dieser Oberfläche



die Function völlig willkürlich ist. Bezeichnet man mit den grössten, mit den kleinsten Werth, welchen die Dichtigkeit überhaupt annimmt, so findet sich



Der zu grosse und der zu kleine Werth sind unbestimmt, so lange endlich bleibt. Fragt man aber nach dem Grenzwerthe für ein unendlich abnehmendes , so kann von einem solchen nicht die Rede sein, weil ist für

 Die Integrale in (6) haben also gar keine Bedeutung, wenn der Punkt im Innern der anziehenden Masse liegt.

 Wollte man in (4) und (5) bei der Integration nach zunächst als untere Grenze nehmen, so fände sich



und ferner



 Auch hier sind die zu grossen und die zu kleinen Werthe unbestimmt, so lange endlich bleibt. Diese Unbestimmtheit fällt aber bei unendlich abnehmendem weg, weil das von Abhängige den Grenzwerth Null hat.

 Um die zweiten Derivirten von auch für den Fall zu ermitteln, dass der angezogene Punkt im Innern der anziehenden Masse liegt, wollen wir zunächst die Ausdrücke für transformiren und erst nachher die neue Differentiation vornehmen.