Schwere, Elektricität und Magnetismus/§. 105.

« §. 104. Schwere, Elektricität und Magnetismus §. 106. »
Für eine seitenweise Ansicht und den Vergleich mit den zugrundegelegten Scans, klicke bitte auf die entsprechende Seitenzahl (in eckigen Klammern).

|[338]

§. 105.
Die Potentialfunction der erdmagnetischen Kräfte.


 Eine Magnetnadel, die um ihren Schwerpunkt frei drehbar aufgehängt ist, stellt sich an jedem Orte der Erdoberfläche in eine ganz bestimmte Richtung ein, selbst dann, wenn künstliche Magnete oder galvanische Ströme in ihrer Nähe nicht vorhanden sind. Man erklärt diese Erscheinung dadurch, dass man die Erde selbst als einen Magnet ansieht. Man nimmt an, dass im Innern der Erde magnetische Massen vorhanden sind oder galvanische Ströme im Innern, resp. an der Oberfläche der Erde, oder dass beide Ursachen neben einander auftreten und die beobachteten magnetischen Wirkungen im äusseren Raume hervorbringen. Nun lässt sich aber jeder geschlossene nichtlineäre Strom als ein System von lineären Strömen auffassen (§. 89). Und wenn es nur auf die äussere magnetische Wirkung ankömmt, so darf man (nach §. 72) den geschlossenen lineären Strom durch eine gewisse Vertheilung fingirter magnetischer Massen ersetzen.

 Ohne der Allgemeinheit der Untersuchung zu schaden, nehmen wir also an, dass die magnetischen Wirkungen, welche der Erdkörper an seiner Oberfläche und im äusseren Raume ausübt, allein herrühre von einer (freilich unbekannten) Vertheilung magnetischer Massen in seinem Innern. Wir betrachten die Erde als eine Kugel vom Radius und legen in ihren Mittelpunkt den Anfangspunkt eines rechtwinkligen Coordinatensystems, dessen positive z-Axe den Nordpol treffen möge. Bezeichnet, man mit ein unendlich kleines magnetisches Massenelement im Innern der Erde, mit die Coordinaten eines Punktes an der Oberfläche oder im äusseren Raume und mit die Entfernung dieses Punktes von dem magne- |[339]tischen Element , so hat die von dem Erdmagnetismus herrührende Potentialfunction im Punkte den Werth


(1)


Die Integration ist über alle magnetischen Massen im Innern der Erdkugel zu erstrecken. Dabei bemerken wir, dass wie bei jedem anderen Magnet auch hier die algebraische Summe der magnetischen Massen im Innern der Erde gleich Null sein muss;


(2)


 Die Vertheilung der magnetischen Massen ist uns nicht bekannt. Wir können also die Function nicht a priori aus ihrer Definitionsgleichung (1) herstellen. Wohl aber sind wir im Stande, an beliebig vielen Punkten der Erdoberfläche die auf die positive magnetische Einheit ausgeübte erdmagnetische Kraft ihrer Grösse und Richtung nach zu beobachten, und daraus lässt sich mit grösserer oder geringerer Genauigkeit der Werth der Potentialfunction in jedem Punkte der Erdoberfläche berechnen. Mit absoluter Genauigkeit, wenn man an jeder Stelle der Erdoberfläche die nach Norden gerichtete horizontale Componente der erdmagnetischen Kraft als bekannt voraussetzt.

 In der That denken wir uns auf der Erdoberfläche ein System von Meridianen gezogen und auf irgend einem Meridian vom Pole aus den sphärischen Abstand genommen. Kennt man dann auf diesem Meridian für jedes (von bis ) die nördlich gerichtete horizontale Componente , so ergibt sieh durch Integration


(3)


und die Integrationsconstante ist der Werth der Potentialfunction im Nordpol. Der Werth dieser additiven Constanten bestimmt sich, wie wir später (§. 110) zeigen werden, daraus, dass die magnetischen Massen im Innern der Erde die Bedingungsgleichung (2) erfüllen.

 Kennt man also auf jedem Meridian die nördlich gerichtete horizontale Componente der erdmagnetischen Kraft, so ist auch |[340]die Potentialfunction in jedem Punkte der Erdoberfläche bekannt. Diesen Satz hat Gauss aufgestellt im Artikel 15 seiner Abhandlung: allgemeine Theorie des Erdmagnetismus.[1]

 Die Voraussetzung, dass die Function in jedem Punkte der Oberfläche gegeben sei, bildet das Fundament der weiteren Untersuchung.



  1. *) Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1838. Herausgegeben, von Gauss und Weber. Leipzig 1839. — Gauss’ Werke. Band 5. Göttingen 1867.