MKL1888:Reibung
[671] Reibung (Friktion), der Bewegungswiderstand, welcher sich zeigt, wenn zwei Körper miteinander in Berührung sind. Die Hauptursache der R. besteht in der Rauhigkeit der sich berührenden Oberflächen, deren Erhöhungen und Vertiefungen ineinander greifen; aber auch die Adhäsion, die Festigkeit der kleinen Hervorragungen, wenn Abreibung erfolgt, sowie ihre Elastizität und Dehnbarkeit, wenn sie ohne Trennung nachgeben, wirken mit. Man unterscheidet die gleitende R., bei welcher immer die nämlichen Teile des bewegten Körpers mit der Unterlage in Berührung [672] bleiben, von der rollenden oder wälzenden R., bei welcher immer neue Teile des rollenden Körpers mit seiner Bahn in Kontakt kommen. Da die R. von so verschiedenen Ursachen, namentlich aber von der Beschaffenheit der sich reibenden Körper, abhängig ist, so lassen sich ihre Gesetze nur durch direkte Versuche ermitteln. Zu Versuchen über die gleitende R. bediente sich Coulomb des Tribometers (s. Figur). Ein Kästchen a, welches beliebig mit Gewichten belastet werden kann, ruht auf zwei horizontalen Schienen b; eine an demselben befestigte Schnur geht über eine Rolle c und trägt an ihrem Ende die Wagschale d. Auf diese werden nun so lange Gewichte aufgelegt, bis sich das Kästchen in Bewegung setzt; das hierzu erforderliche Gewicht gibt alsdann den Reibungswiderstand an, welcher zu überwinden war. Aus solchen Versuchen ergibt sich zunächst, daß die R. unabhängig ist von der Ausdehnung der reibenden Flächen, falls die Adhäsion vernachlässigt werden kann und die gleitende Fläche nicht so schmal ist, daß sie in die Bahn einschneidet. Ferner ergibt sich, daß die R. dem Druck proportional ist, mit welchem die reibenden Flächen aneinander gedrückt werden. Wird daher die R. (d. h. das Gewicht der Wagschale d samt dem aufgelegten Gewicht) dividiert durch den Druck (d. h. das Gewicht des Kästchens a samt seiner Belastung), so erhält man für ein und dasselbe Material einen konstanten Wert, den Reibungskoeffizienten, welcher ausdrückt, der wievielte Teil der Last zur Überwindung der R. erforderlich ist. Die R. der Ruhe, wenn ein ruhender Körper in Bewegung gesetzt werden soll, ist größer als die R. der Bewegung, wenn die Bewegung bereits eingeleitet ist (bei Metallen ist der Unterschied nur gering); erstere wächst mit der Berührungsdauer bis zu einem Maximum, bei letzterer ist die Geschwindigkeit der Bewegung ohne Einfluß. Die R. ist in der Regel stärker zwischen gleichartigen als zwischen ungleichartigen Körpern; bei Metallen wächst sie mit der Temperatur, bei Hölzern mit der Feuchtigkeit. Für Hölzer ist sie geringer bei gekreuzten als bei parallelen Fasern. Folgende Tabelle enthält die mittlern Werte der Reibungskoeffizienten der am häufigsten angewandten Materialien:
Namen der sich reibenden Körper | Reibungskoeffizient | |
der Ruhe | der Bewegung | |
Holz auf Holz trocken | 0,50 | 0,36 |
„ „ „ mit trockner Seife | 0,36 | 0,15 |
„ „ „ mit Talg | 0,19 | 0,07 |
„ „ „ mit Wasser | 0,68 | 0,25 |
„ „ Metall trocken | 0,60 | 0,42 |
„ „ „ mit Olivenöl | 0,10 | 0,06 |
„ „ „ mit Talg | 0,12 | 0,08 |
„ „ „ mit Wasser | 0,65 | 0,24 |
Metall auf Metall trocken | 0,18 | 0,18 |
„ „ „ mit Schweinefett | 0,10 | 0,09 |
„ „ „ mit Olivenöl | 0,12 | 0,07 |
Seile auf Holz trocken | 0,63 | 0,45 |
„ „ „ mit Wasser | 0,87 | 0,33 |
Lederriemen auf Holz trocken | 0,47 | 0,30 |
„ „ Gußeisen fettig | 0,28 | 0,23 |
Liegt ein Körper auf einer schiefen Ebene, so zerlegt sich sein vertikal abwärts wirkendes Gewicht in zwei Komponenten, von denen die eine auf der schiefen Ebene senkrecht steht, die andre mit der schiefen Ebene parallel ist. Die erstere stellt den Druck dar, mit welchem der Körper gegen die schiefe Ebene gepreßt wird, die letztere dagegen die Kraft, welche den Körper längs der schiefen Ebene herabtreibt. Wächst nun der Neigungswinkel der schiefen Ebene, so nimmt jener Druck und demnach auch die R. ab, und die herabtreibende Kraft wächst. Bei einem gewissen Winkel, welchen man den Reibungswinkel nennt, wird die herabtreibende Kraft der R. gleich, und der Körper beginnt herabzugleiten. Aus der Größe des Reibungswinkels
Coulombs Tribometer. | |
kann man aber den Reibungskoeffizienten bestimmen; derselbe ist nämlich gleich dem Quotienten aus der herabtreibenden und der drückenden Kraft oder, was dasselbe ist, gleich der Tangente des Reibungswinkels. Der Böschungswinkel, welchen lockere Massen, z. B. Sand, beim Aufschütten bilden, ist dem Reibungswinkel gleich. Eine besondere Art der gleitenden R. ist diejenige zwischen einem Zapfen und seinem Lager, die sogen. Zapfenreibung; sie ist kleiner als die R. zwischen ebenen Flächen. Da die Arbeit, welche zur Überwindung der Zapfenreibung bei einer Umdrehung aufgewendet werden muß, dem Umfang und folglich auch dem Durchmesser des Zapfens proportional ist, so macht man diesen so klein, als es irgend angeht. Leichte und schnell laufende Wellen läßt man auch zwischen Körnerspitzen laufen, d. h. man gibt der Welle gar keine Zapfen, sondern zwei konische Spitzen, welche in entsprechenden Vertiefungen laufen. Folgende Tabelle enthält die Koeffizienten der Zapfenreibung:
Namen der Körper | Trocken oder wenig fettig | Mit Öl oder Talg geschmiert | |
gewöhnlich | gut | ||
Glockengut auf Glockengut | – | 0,097 | – |
„ „ Gußeisen | – | – | 0,049 |
Schmiedeeisen auf Glockengut | 0,215 | 0,075 | 0,054 |
„ „ Gußeisen | – | 0,075 | 0,054 |
Gußeisen auf Gußeisen | – | 0,075 | 0,054 |
„ „ Glockengut | 0,194 | 0,075 | 0,054 |
Schmiedeeisen auf Pockholz | 0,188 | 0,125 | – |
Gußeisen auf Pockholz | 0,185 | 0,100 | 0,092 |
Pockholz auf Gußeisen | – | 0,116 | – |
„ „ Pockholz | – | – | 0,070 |
Die wälzende R., welche bei dem Fortrollen von Walzen, Rädern etc. eintritt, ist bedeutend kleiner als die gleitende. Sie ist dem Druck direkt und dem Halbmesser der Walze umgekehrt proportional. Letzteres findet schon durch die Thatsache Bestätigung, daß hohe Räder einem Fuhrwerk eine leichtere Beweglichkeit verleihen als niedrige. Nach Morin beträgt auf Eisenbahnen die R. etwa 1/200 der Belastung, bei gewöhnlichen Frachtwagen auf sehr guter Straße 1/50, auf einer gewöhnlichen Straße 1/35, auf sehr gutem Pflaster 1/65, auf schlechtem Pflaster 1/46 der Belastung.
Um die R. möglichst zu vermindern, bedient man sich außer sorgfältiger Politur und geeigneter Auswahl der Körper, welche sich aufeinander bewegen sollen, mit großem Erfolg flüssiger und trockner Schmiermittel, z. B. Öl, Fett, Talg, Seife, Graphit [673] (die sogen. Antifriktionsschmiere besteht aus Fett und Graphit), welche die Flächen glätten, indem sie deren Unebenheiten ausfüllen. Namentlich aber sucht man, wo es angeht, die gleitende R. in die wälzende zu verwandeln, indem man z. B. fortzubewegende Lasten auf Walzen legt, Rollen an den Füßen der Tische und Stühle anbringt (Rollschuhe beim Skating-Rink). Soll ein Rad (wie z. B. dasjenige der Fallmaschine) sehr leicht beweglich sein, so legt man seine dünne Achse nicht in Lager, sondern in die Winkel, welche die Umfänge je zweier nebeneinander stehender leichter Rädchen, sogen. Friktionsräder (s. d.), miteinander bilden. Gleitende R. findet alsdann nur noch an den Zapfen der vier Rädchen statt, wo sie fast unmerklich wird. Es gibt aber auch sehr viele Fälle, in welchen die R. Vorteil bringt. Alles Befestigen und Verbinden der Körper durch Klemmen, Nägel, Schrauben, Schnüre etc. beruht auf R.; die Fortpflanzung der Bewegung durch Treibriemen und Seile sowie die Verzögerung der Bewegung durch Bremsen ist lediglich auf R. begründet. Ohne R. könnte unser Fuß nicht am Boden haften, und die Lokomotiven würden mit rotierenden Rädern auf den Schienen stehen bleiben.