Heinrich Hertz: Untersuchungen über die Ausbreitung der elektrischen Kraft
Seite 224
<< Zurück Vorwärts >>
fertig
Fertig! Dieser Text wurde zweimal anhand der Quelle Korrektur gelesen. Die Schreibweise folgt dem Originaltext.


[224]

13. Ueber die Grundgleichungen der Elektrodynamik.


[1]

und nennen die Resultante der die magnetische, die Resultante der die elektrische Polarisation. Für isotrope Medien sind Polarisationen und Kräfte gleich gerichtet, und das Verhältniss ersterer zu letzteren ist die Dielektricitäts-, resp. Magnetisirungsconstante. Für den Aether fallen Polarisationen und Kräfte zusammen. Führen wir die Polarisationen in die linken Seiten unserer Gleichungen ein, so giebt uns jede Gleichung die Aenderung einer einzigen Polarisationscomponente als Folge der augenblicklich vorhandenen Kräfte. Da die Kräfte lineare Functionen der Polarisation sind, so hat es keine Schwierigkeit, auch auf der rechten Seite der Gleichungen die Polarisationen einzuführen. Wir würden hierdurch diejenige gerichtete Grösse, durch welche wir die elektromagnetischen Zustände zuerst bestimmten, die Kraft, ersetzt haben durch eine andere gerichtete Grösse, die Polarisation, welche uns das gleiche, aber wenig mehr leistet, als jene. Dass die Einführung der Polarisationen und Kräfte nebeneinander die Gleichungen wesentlich vereinfacht, ist eine erste Andeutung dafür, dass eine vollständige Darstellung der Zustände in ponderabeln Körpern die Angabe mindestens zweier gerichteten Grössen für den elektrischen und zweier gerichteten Grössen für den magnetischen Zustand erfordert.

     Um unsere Gleichungen weiter zu vereinfachen, setzen wir:

Aus Gründen, welche im folgenden Abschnitt hervortreten, nennen wir die (elektrostatisch gemessenen) Componenten der elektrischen Strömung.

     Unsere allgemeinsten Gleichungen nehmen nunmehr die Form an:


  1. [WS: Druckfehler in jeweils 3. Gleichung: Index 23 → 32]