Heinrich Hertz: Untersuchungen über die Ausbreitung der elektrischen Kraft
Seite 113
<< Zurück Vorwärts >>
fertig
Fertig! Dieser Text wurde zweimal anhand der Quelle Korrektur gelesen. Die Schreibweise folgt dem Originaltext.


[113]

6. Inductionserscheinungen in Isolatoren.


Zweitens kann man einwenden, die Wirkungen seien vielleicht Strömungen zuzuschreiben, welche einem Reste von Leitungsvermögen ihr Dasein verdanken. Dieser Einwand wird kaum auf Beifall rechnen dürfen, wenn er hinsichtlich der vorzüglichen Isolatoren Schwefel und Paraffin vorgebracht wird. Aber ich glaube, dass er selbst hinsichtlich der weniger guten Isolatoren, wie Holz, nicht am Orte ist. Gesetzt auch, ein solcher Stoff isolire so mangelhaft, dass er der geladenen Platte A gestatte, sich in dem zehntausendsten Theile der Secunde, aber nicht viel schneller, zu entladen, so würde doch während einer Schwingung unseres Apparates die Platte immer nur den zehntausendsten Theil ihrer Ladung verlieren. Der eigentliche Leitungsstrom in dem untersuchten Stoffe würde also immer nur den zehntausendsten Theil des primären Stromes in AA′ ausmachen, und er würde also noch völlig unwirksam sein. Wenigstens für die besseren Isolatoren ist demnach jede Mitwirkung der Leitung ausgeschlossen.

     Für die quantitativen Verhältnisse der Versuche erscheint es nicht möglich, schon jetzt eine ansprechende Deutung zu geben.


     Wir haben oben gesehen, welchen Einfluss ein dem primären Leiter AA′genäherter metallischer Leiter C auf den secundären Kreis B hat. War C in Resonanz mit AA′, so war seine Einwirkung auf C nicht interferenzfähig mit der directen Wirkung von AA′. Gleichzeitig aber war diese Einwirkung im Zustande der Resonanz ziemlich kräftig, sodass dieselbe noch wahrgenommen werden konnte, wenn auch C um 1–1,5 m von AA′ entfernt wurde. Hierauf gründete ich Versuche, welche eine endliche Ausbreitungsgeschwindigkeit der elektrischen Kräfte nachweisen sollten. Brauchen nämlich diese Kräfte Zeit, um zunächst von AA′ nach C und von da zurück nach B zu gelangen, so wird die Phasendifferenz zwischen den Wirkungen von AA′ auf B und von C auf B zunehmen mit wachsender Entfernung zwischen AA′ und C, und beide Wirkungen müssen wieder interferenzfähig werden, wenn die Entfernung zwischen AA′ und C so gross wird, dass sie von der elektrischen Kraft in dem vierten Theile der halben Schwingungsdauer durch-